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Abstract: - Radial Basis Functions (RBF) interpolation theory is briefly introduced at the “application level” 
including some basic principles and computational issues. The RBF interpolation is convenient for un-ordered 
data sets in n-dimensional space, in general. This approach is convenient especially for a higher dimension 
N ൐ 2  conversion to ordered data set, e.g. using tessellation, is computationally very expensive. The RBF 
interpolation is not separable and it is based on distance of two points. The RBF interpolation leads to a 
solution of a Linear System of Equations (LSE) ࢞࡭ ൌ  :There are two main groups of interpolating functions .࢈
‘global” and “local”. Application of “local” functions, called Compactly Supporting Functions (CSFBF), can 
significantly decrease computational cost as they lead to a system of linear equations with a sparse matrix.  
The RBF interpolation can be used also for image reconstruction, inpainting removal, for solution of Partial 
Differential Equations (PDE) etc. 
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1 Introduction 
 
Interpolation is one of the most frequent operations 
used in computational techniques. Several 
techniques have been developed for data 
interpolation, but they expect some kind of data 
“ordering”, e.g. structured mesh, rectangular mesh, 
unstructured mesh etc. The typical example is a 
solution of partial differential equations (PDE) 
where derivatives are replaced by differences and 
rectangular mesh is used in the vast majority of 
cases. Nevertheless in many engineering problems, 
data are not ordered and they are scattered in 
n-dimensional space, in general. Usually, in 
technical applications the scattered data are 
tessellated using triangulation but this approach is 
quite prohibitive for the case of n-dimensional data 
interpolation because of the computational cost. An 
interesting technique is n dimensional data 
interpolation using Radial Basis Functions (RBF). 
The RBF interpolation is computationally more 
expensive because interpolated data are not ordered, 
but offers quite interesting applications with 
acceptable computational cost, e.g. solution of 
partial differential equations, image reconstruction, 
neural networks, fuzzy systems, GIS systems, optics 
and interferometry etc. 

2 Problem Formulation 
Interpolation is very often used and mostly linear 
interpolation is used in technical applications. Let us 
analyze first different types of data to be processed. 
Also there is a question whether the Euclidean space 
representation is the best for computing and 
engineering applications. It is well known that the 
division operation is very dangerous in numerical 
computations and causes severe problems in 
numerical methods. Also it is known that 
computations can be made in the projective 
extension of the Euclidean space [20][21][23][27]. 
The projective formulation of numerical problems 
leads to very interesting questions, e.g. an explicit 
solution of LSE is equivalent to the cross-product. 
Why the division operation in the Gauss-Seidel or 
similar methods is needed? [Ska, Ondra]. The 
projective space representation and dthe principle of 
duality also helps to solve some problems more 
efficiently [19][20][25]. Also Non-rational uniform 
B-Splines (NURBS) are actually curves or surfaces 
defined using the projective extension of the 
Euclidean space. 

In the following we use the Euclidean space 
representation to explain the fundamental principles. 
We will explore incremental computation of RBF as 
well. 

11th Conference SIP’2012 & Plenary talk, pp.137-142, ISBN: 978-1-61804-081-7, St.Malo, WSEAS, France, 2012



3 Data Classification 
Before analyzing methods for interpolation, it is 
reasonable to classify data to be processed. It seems 
to be a simple task, but let us explore it more 
deeply. Generally, the data can be represented by: 

1. Coordinates, e.g. by points ሼ࢞௜ሽଵ
ெ in 

computer graphics, which forms triangular 
mesh in E2, or scalar values, e.g. 
representing temperatures etc., 

2. coordinates and associated values 
 ሼ࢞ۃ௜, ሽଵۄ௜ࢎ

ெ, e.g. coordinates of points ࢞௜ 
and associated values ࢎ௜ with each point. 

The dimensionality of a vector of coordinates 
 ݀݅݉ሺ࢞௜ሻ ൌ ௜࢞ .i.e ,ܯ  ൌ ሾݔଵ, … ,  ெሿ், while theݔ
dimensionality of a vector of values ݀݅݉ሺࢎ௜ሻ ൌ  ,݌ 
i.eࢎ௜ ൌ ൣ݄ଵ, … , ݄௣൧்

.. 
It can be seen that those two cases are quite different 
cases if an interpolation is to be used. Also data can 
be  

• hierarchical 
• non-hierarchical 

or 
• adaptive to some physical phenomena 
• non-adaptive 

and  
• dynamic (t-variant) in coordinates ࢞௜ or in 

values ࢎ௜ or both! or 
• static 

 
- Un-ordered - Scattered 

- Clustered 
 

- Ordered - Unstructured 
- Structured 

- Non-regular 
- Semi-regular 
- Regular  

  

  
Table 1: A simple classification of data 

 
In the case of un-ordered data, mostly some 
tessellation techniques like triangularization in the 
E2 case or tetrahedronization in the E3 case are used 
and generally an unstructured mesh is obtained.  

The semi-regular mesh is obtained just in the 
case when data are ordered in a rectangular grid and 
Delaunay triangulation is used. It should be noted 
that this is a very unstable situation, as due to some 
small shifts in coordinates, the tessellation can be 
totally changed. 

Interpolation techniques on “ordered” data sets 
are well known and used in many packages.  

Let us explore how to interpolate values ࢎ௜ in the 
given un-ordered  ሼ࢞ۃ௜, ሽଵۄ௜ࢎ

ெ data set. Of course, 

there is a theoretical possibility to use a tessellation 
in order to get an ordered unstructured mesh, but 
this process is computationally very expensive as 
the computational complexity of the tessellation 
grows with the dimension N non-linearly and 
complexity of the implementation grows as well.  

On the other hand, there are interpolation 
techniques applicable for un-ordered data sets. One 
of such technique is based on Radial Basis 
Functions (RBF) which is especially convenient for 
the interpolation in the n-dimensional space. The 
RBF interpolation based on radial basis functions is 
quite simple from a mathematical point of view.  

Let us consider the case, when ݄௜ are scalar 
values for RBF interpolation explanation. The RBF 
interpolation is based on computing of the distance 
of two points in the N-dimensional space and is 
defined by a function  

݂ሺ࢞ሻ ൌ ෍ ࢞௝ ߮൫ฮߣ െ ௝ฮ൯࢞
ெ

௝ୀଵ

ൌ ෍ ௝൯ݎ௝ ߮൫ߣ
ெ

௝ୀଵ

          

௝ݎ ൌ ฮ࢞ െ   ௝ฮ࢞

It means that for the given data set  ሼ࢞ۃ௜, ݄௜ۄሽଵ
ெ, 

where ݄௜ are associated values to be interpolated 
and ࢞௜ are domain coordinates, we obtain a linear 
system of equations 

݄௜ ൌ ݂ሺ࢞௜ሻ ൌ ෍ ௜࢞௝ ߮൫ฮߣ െ ௝ฮ൯࢞
ே

௝ୀଵ

       ݅ ൌ 1, … ,  ܯ

where: ߣ௝  are weights to be computed. Due to some 
stability issues, usually a polynomial ௞ܲሺ࢞ሻ of 
a degree k is added to the form, i.e. 

݄௜ ൌ ݂ሺ࢞௜ሻ ൌ ෍ ௜࢞௝ ߮൫ฮߣ െ ௝ฮ൯࢞
ெ

௝ୀଵ

 ൅ ௞ܲሺ࢞௜ሻ 

 ݅ ൌ 1, … ,  ܯ

For a practical use, the polynomial of the 1st degree 
is used, i.e. linear polynomial ଵܲሺ࢞ሻ ൌ ்࢞ࢇ ൅ ܽ଴, in 
many applications. So the interpolation function has 
the form:  

݂ሺ࢞௜ሻ ൌ ෍ ௜࢞௝ ߮൫ฮߣ െ ௝ฮ൯࢞
ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴

ൌ ෍ ௝ ߮௜,௝ߣ

ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴  

݄௜ ൌ ݂ሺ࢞௜ሻ           ݅ ൌ 1, … ,   ܯ

and additional conditions are applied: 

෍ ௜ߣ ൌ 0
ெ

௝ୀଵ

            ෍ ௜࢞௜ߣ ൌ ૙
ெ

௝ୀଵ
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It can be seen that for N-dimensional case a system 
of ሺܯ ൅ ܰ ൅ 1ሻ LSE has to be solved, where M is 
a number of points in the dataset and N is the 
dimensionality of data.  

For N=2 vectors xi and a are given as ࢞௜ ൌ ሾݔ௜,   ௜ሿ்ݕ
and ࢇ ൌ ൣܽ௫, ܽ௬൧்

. Using the matrix notation we 
can write for 2-dimensions: 

ۏ
ێ
ێ
ێ
ێ
ۍ

߮ଵ,ଵ . . ߮ଵ,ெ ଵݔ ଵݕ 1
: ڰ : : : :

߮ெ,ଵ . . ߮ெ,ெ ெݔ ெݕ 1
ଵݔ . . ெݔ 0 0 0
ଵݕ . . ெݕ 0 0 0
1 . . 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵߣ
:

ெߣ
ܽ௫
ܽ௬
ܽ଴ ے

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

݄ଵ
:

݄ெ
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ې

 

ቂ ࡮ ࡼ
்ࡼ ૙ቃ ቂࣅ

ቃࢇ ൌ ቂࢌ
૙

ቃ ࢞࡭ ൌ  ࢈

൅ ܽ଴ ࢏࢞ ்ࢇ ൌ ܽ௫ ݔ௜ ൅ ܽ௬ ݕ௜ ൅ ܽ଴ 

It can be seen that for the two-dimensional case and 
M points given a system of ሺܯ ൅ 3ሻ linear equations 
has to be solved. If “global” functions, e.g. TPS 
(߮ሺݎሻ ൌ  are used the matrix B is “full”, if ,( ݎ ଶ݈݃ݎ
“local” functions (Compactly supported RBF – 
CSRBF) are used, the matrix B can be sparse. 

The radial basis functions interpolation was 
originally introduced by [5] by introduction of 
multiquadric method in 1971, which he called 
Radial Basis Function (RBF) method. Since then 
many different RFB interpolation schemes have 
been developed with some specific properties, e.g. 
[4] uses ߮ሺݎሻ ൌ  which is called Thin-Plate ,ݎ ଶ݈݃ݎ
Spline (TPS), a function ߮ሺݎሻ ൌ ݁ିሺఢ௥ሻమ was 
proposed by [9] and [12] introduced Compactly 
Supported RBF (CSRBF) as  

߮ሺݎሻ ൌ ቊ
ሺ1 െ ,ሻݎሻ௤ ܲሺݎ     0 ൑ ݎ ൑ 1

 0, ݎ                   ൐ 1
  , 

where: ܲሺݎሻ is a polynomial function and q is 
a parameter.  

Theoretical problems with stability and 
solvability were solved by [6] and [13]. Generally, 
there are two main groups of the RBFs: 

• “global” – a typical example is TPS 
function 

• “local” –  Compactly supported RBF 
(CSRBF)  

If the “global” functions are taken, the matrix A of 
the LSE is full and for large M is becoming ill 
conditioned and problems with convergence can be 
expected. On the other hand if the CSRBFs are 
taken, the matrix A is becoming relatively sparse, 
i.e. computation of the LSE will be faster, but we 

need to carefully select the scaling factor and the 
final function tends to be “blobby” shaped. 

“Global“ functions ߶ሺݎሻ 
Thin-Plate Spline (TPS) rr log2  

Gauss function ( )( )2exp rε−  

Inverse Quadric (IQ) ( )( )211 rε+  
Inverse multiquadric 

(IMQ) ( )211 rε+  

Multiquadric (MQ) ( )21 rε+  

Table 1 Typical example of “global” functions” 
 

ID Function
1 +− )1( r
2 )13()1( 3 +− + rr  
3 )158()1( 25 ++− + rrr  
4 2)1( +− r  
5 )14()1( 4 +− + rr  
6 )31835()1( 26 ++− + rrr  
7 )182532()1( 238 +++− + rrrr  
8 3)1( +− r  
9 )15()1( 3 +− + rr  

10 )1716()1( 27 ++− + rrr  
Table 2 Typical examples of “local” functions - 

CSRBF [13] 

 
Figure 1 Geometrical properties of CSRBF [13] 

Tab.2 presents typical examples of CSRBFs. 
They are defined for the interval < 0 , 1 >, but for 
the practical use a scaling is used, i.e. the value r is 
multiplied by a scaling factor α, where 0 < α < 1.  

 
4 Incremental computation 

11th Conference SIP’2012 & Plenary talk, pp.137-142, ISBN: 978-1-61804-081-7, St.Malo, WSEAS, France, 2012



As for many applications, the number of points is 
high and some data are to be deleted and new 
inserted, it is not possible to recompute the whole 
LSE due to computational complexity. In this case 
the incremental computation of RBF is to be used. 
The algorithm itself is simple [22-incremetal] and 
can be simply described as follows: 

Let us consider a matrix Q of 
(M+1) × (M+1) and a matrix A of M × M in the 
following block form: 

ࡽ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

Then the inverse of the matrix ࡽ  applying the 
rule above can be written as: 

ଵିࡽ ൌ

ۏ
ێ
ێ
࡭൬ۍ െ

1
ܿ ൰்࢈࢈

ିଵ

െ
1
݇ ࢈ଵି࡭

െ
1
݇ ଵି࡭்࢈ 1

݇ ے
ۑ
ۑ
ې
 

where:  ݇ ൌ ܿ െ  ࢈ଵି࡭்࢈
We can easily simplify this equation if the 

matrix A is symmetrical as: 
ࣈ ൌ ݇ ࢈ଵି࡭ ൌ ܿ െ  ࢈ࢀࣈ

ଵିࡹ ൌ  
1
݇ ቈ݇ି࡭ଵ ൅ ࢀࣈ۪ࣈ െࣈ

െࢀࣈ 1
቉ 

where: ࢀࣈ۪ࣈ means the tensor multiplication. It 
can be seen that all computations needed are of 
O(M2) computational complexity. 

It means that we can compute an inverse 
matrix incrementally with O(M2) complexity 
instead of O(M3) complexity required originally 
in this specific case. It can be seen that the 
structure of the matrix Q is “similar to the 
matrix of the RBF specification [28]. 
 
 
5 RBF Approximation 
The RBF interpolation relies on solution of a LSE 
࢞࡭ ൌ  of the size M × M in principle, where M is a ࢈
number of the data processed. If the “global” 
functions are used, the matrix ࡭ is full, while if the 
“local” functions are used (CSRBF), the matrix ࡭ is 
sparse. 

However, in visualization applications it is 
necessary to compute the final function ݂ሺ࢞ሻ many 
many times and even for already computed ߣ௜ 
values, the computation of ݂ሺ࢞ሻ is too expensive. 
Therefore it is reasonable to significantly “reduce” 
the dimensionality of the LSE ࢞࡭ ൌ  ,Of course .࢈
we are now changing the interpolation property of 
the RBF to approximation, i.e. the values computed 
do not pass the given values exactly. 

Probably the best way is to formulate the 
problem using the Least Square Error 
approximation. Let us consider the formulation of 
the RBF interpolation again.  

݂ሺ࢞௜ሻ ൌ ෍ ௜࢞௝ ߮൫ฮߣ െ ௝ฮ൯ࣈ
ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴  

݄௜ ൌ ݂ሺ࢞௜ሻ           ݅ ൌ 1, … , ܰ 

where: ࣈ௝ are not given points, but points in a pre-
defined “virtual mesh” as only coordinates are 
needed (there is no tessellation needed). This 
“virtual mesh” can be irregular, orthogonal, regular, 
adaptive etc. For simplicity, let us consider the 
two-dimensional squared (orthogonal) mesh in the 
following example. Then the ࣈ௝ coordinates are the 
corners of this mesh. It means that the given 
scattered data will be actually “re-sampled”, e.g. to 
the squared mesh. 

New reference points  ξ

Given points  x

 
Figure 2. RBF approximation and points’ reduction 

In many applications the given data sets are heavily 
over sampled, or for the fast previews, e.g. for the 
WEB applications, we can afford to “down sample” 
the given data set. Therefore the question is how to 
reduce the resulting size of LSE.  

Let us consider that for the visualization 
purposes we want to represent the final potential 
field in N-dimensional space by ܲ values instead of 
ܲ and ܯ ا  The reason is very simple as if we .ܯ
need to compute the function ݂ሺ࢞ሻ in many points, 
the formula above needs to be evaluated many 
times. We can expect that the number of evaluation 
ܳ can be easily requested at 10ଶ ܯ of points (new 
points) used for visualization.  

If we consider that  ܳ ൒ 10ଶ ܯ  and  ܯ ൒ 10ଶ ܲ 
then the speed up factor in evaluation can be 
easily about ૚૙૝ !  

This formulation leads to a solution of a linear 
system of equations ࢞࡭ ൌ  where number of ࢈
rows ܯ ب ܲ, number of unknown ሾߣଵ , … ,  ௉ ሿ். Asߣ
the application of RBF is targeted to high 
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dimensional visualization, it should be noted that the 
polynomial is not requested for all kernels of the 
RBF interpolation. But it is needed for ߮ሺݎሻ ൌ
 kernel function (TPS). This reduces the size ݎ ଶ݈݃ݎ
of the linear system of equations ࢞࡭ ൌ  ࢈
significantly and can be solved by the Least Square 
Method (LSM) as  ࢞࡭்࡭ ൌ  or Singular Value ࢈்࡭
Decomposition (SVD) can be used. 

ۏ
ێ
ێ
ێ
ۍ

߮ଵ,ଵ ڮ ߮ଵ,௉
ڭ ڰ ڭ

߮௜,ଵ . . ߮௜,௉
ڭ ڰ ڭ

߮ெ,ଵ ڮ ߮ெ,௉ے
ۑ
ۑ
ۑ
ې

൥
ଵߣ
ڭ

௉ߣ

൩ ൌ

ۏ
ێ
ێ
ێ
ۍ

݄ଵ
ڭ
ڭ
ڭ

݄ெے
ۑ
ۑ
ۑ
ې
࢞࡭         ൌ  ࢈

The high dimensional data can be approximated for 
visualization by RBF efficiently with a high 
flexibility as it is possible to add additional points of 
an area of interest to the mesh. It means that a user 
can add some points to already given mesh and 
represent easily some details if requested. It should 
be noted that the use of LSM increases instability of 
the LSE in general. 
 
 
6 Experimental Evaluation 
The RBF interpolation is a very powerful tool for 
interpolation of data in N-dimensional space in 
general. In order to demonstrate the functionality the 
RBF, we have recently used RBF for reconstruction 
of damaged images by a noise or by inpainting. Also 
a surface reconstruction has been solved by the RBF 
interpolation well. Fig. 3 illustrates the power of the 
RBF interpolation [2][3][8][15][24][26]28]. 

The RBF interpolation gives quite good results 
even if the images are heavily damaged. The 
advantages of RBF interpolation over the other 
interpolations have been proved even though that 
the RBF interpolation causes some additional 
computational cost as the RBF is primarily targeted 
for scattered data interpolation. 

 
Figure 3a. Original image with 60% of damaged 

pixels [13] 

 
Figure 3b. Reconstructed image [13] 

 
 
7 Conclusion 
The radial basis functions (RBF) interpolation is a 
representative interpolation method for unordered 
scattered data sets. It is well suited approach for 
solving problems without meshing the data domain. 
RBF interpolations are used in many computational 
fields, e.g in solution of partial differential equations 
etc. The RBF interpolation formulation supports the 
N-dimensional space naturally. 

This paper briefly describes a principle of the 
RBF incremental computation and shows the 
decrease of the computational complexity from 
approx. ܱሺܯଷሻ to ܱሺܯଶሻ for a point insertion and 
a point removal.  

It also presents a method for “resampling” the 
data processed as the approximation is acceptable in 
many applications, namely in visualization. The 
approach enables to increase details for visualization 
by adding new points to the “virtual mesh”, if more 
details are needed. It is necessary to mention, that 
there is no mesh actually needed and only points of 
the “virtual mesh” need to be defined. 
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