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ABSTRACT 

 
Compression of 3D mesh animations is a topic that has 
received increased attention in recent years, due to 
increasing capabilities of modern processing and displaying 
hardware. In this paper we present an improved approach 
based on known techniques, such as principal component 
analysis (PCA) and EdgeBreaker, which allows efficient 
encoding of highly detailed dynamic meshes, exploiting 
both spatial and temporal coherence. We present the results 
of our method compared with similar approaches described 
in literature, showing that using our approach we can 
achieve better performance in terms of rate/distortion ratio. 
 

Index Terms — Dynamic mesh, compression, PCA, 
EdgeBreaker, coherency exploitation, entropy 
 

1. INTRODUCTION 
 
Dynamic mesh is a common term used for a series of static 
triangular meshes that represents a development of some 
surface in time. Usually, two additional assumptions are 
made about the dynamic mesh: 

 
• every mesh in the series has the same connectivity, i.e. 

there is an one-to-one correspondence of vertices from 
frame to frame of the animation 

• the animation represents some physical process, i.e. 
there are no sudden changes in the geometry of the 
subsequent frames of the animation. 

 
The problem of compressing such data structure has 

been addressed in the past by various approaches. One class 
of algorithms is based on various spatio-temporal 
predictors, which are an extension of the spatial predictors, 
such as the parallelogram predictor [1]. The spatio-temporal 
predictors apart from using positions of vertices in the 
current frame also use vertex positions form one or more 
preceding frames. One of the first attempts in this field are 
the two spatio temporal predictors introduced with the 
DynaPack algorithm by Ibarria and Rossignac [2], the ELP 
predictor, and the Replica predictor. The connectivity driven 
predictor proposed by Stefanoski [3] is another example of a 
spatio-temporal predictor. 

The approach suggested by Mueller et al. [4] can be 
seen as an augmentation of the predictor based technique by 
using spatial subdivision by an octree structure according to 
the size of prediction residuals. 

A slightly different approach has been proposed by 
Payan et al. [5]. Their approach is targeted on exploiting the 
temporal coherence by wavelet decomposition of the vertex 
trajectories, followed by a rigorous bit-allocation process 
that optimizes the rate-distortion ratio. 

Alexa and Mueller [6] have suggested a PCA-based 
approach based on reducing the space of shapes (frames). 
Their approach first requires a rigid motion compensation 
(the least-squares method is used to find an affine transform 
that best fits the given frame with respect to the first frame 
of the animation), and each frame is then expressed as a 
linear combination of uncorrelated basis of the space of 
possible shapes, called EigenShapes. The method is based 
on singular value decomposition (SVD), as the space 
dimension (number of vertices) is much greater than the 
number of samples (number of frames). 

Several improvements of the original Alexa’s method 
have been proposed. First, Karni and Gotsman [7] have 
suggested using linear prediction coding (LPC) on the PCA 
coefficients in order to exploit temporal coherence of the 
data. Subsequently, Sattler et al. [8] have proposed an 
application of PCA onto trajectories instead of shapes, and 
combining the approach with spatial clustering which 
allows exploitation of spatial coherence. 

A combination of PCA and local coordinate frame 
(LCF) has been suggested by Amjoun [9]. The approach is 
based on spatial clustering driven by the magnitude of 
vertex coordinates expressed in each cluster’s LCF. 

Recently, Mamou et al. [10] have proposed a method 
based on automated skinning, which also uses the spatial 
clustering. An affine transform that best fits each cluster 
movement in time is found, and each vertex is described by 
a weighted sum of the transforms associated with the cluster 
the vertex belongs into, and of the transforms assigned with 
the neighboring clusters. 

More detailed description of the compression 
approaches can be found in [11]. Generally, the methods 
can be classified according to what approach is used to 
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exploit spatial and temporal coherence of the input data. 
Following table summarizes the methods mentioned above: 
 

 
spatial 

coherence temporal coherence 

Ibarria predictor 
(three vertices) predictor (one frame) 

Stefanoski predictor 
(three vertices) predictor (one frame) 

Mueller octree predictor (one frame) 

Payan wavelet 
decomposition none 

Alexa PCA None 

Karni PCA LPC 

Sattler clustering PCA 

Amjoun clustering, LCF PCA 

Mamou skinning least-squares 
affine transform fitting 

 
The goal of dynamic mesh compression is to exploit as 

much spatial and temporal coherence as possible, and 
indeed the methods that combine most efficient methods for 
spatial and temporal coding provide the best results. 
However, the problem of some of the methods, such as 
EigenShapes based PCA method by Karni, is that there is a 
significant overhead of the PCA basis, where no coherence 
is exploited at all. The coordinates of the EigenShapes must 
be encoded very precisely, and no coherence between the 
EigenShapes can be used for better compression, because 
the EigenShapes are uncorrelated. 

 
2. CODDYAC ALGORITHM DERIVATION 

 
The current movie industry modeling tools usually work 
with low-poly models, which are only smoothed using some 
subdivision technique as the last step of the modeling 
process. However, the copyright issues and intellectual 
property protection will most likely enforce transmission of 
the final, smoothed, high-poly models. Also the current 
scanning techniques provide rather dense meshes, and the 
trend in computer games towards higher precision models is 
also well known. On the other hand, the length of the 
animation sequence is dictated by the rules of movie editing. 
It is well known that usual movie scene is not longer than a 
few seconds, being followed by a cut onto a different actor 
or location, in order to maintain the observer’s attention. 

Generally, we can expect growth of the complexity of 
separate frames, i.e. growth of number of triangles and 
vertices, while the length of the image sequences will 
remain almost the same, and for the purposes of 3D 
television it is not expected to be larger than 10 seconds, i.e. 
250 frames. 

Having this in mind, it seems to be preferable to use 
PCA to encode vertex trajectories rather than the whole 
frames. The advantages of such approach are following: 

- smaller size of autocorrelation matrix, which can be 
therefore faster analyzed using eigenvalue 
decomposition 

- smaller size of the PCA basis vectors 
- significantly lower memory consumption during 

compression, due to the fact that SVD within shape-
based PCA depends on the square of number of vertices, 
while EVD within trajectory-based PCA only depends 
on the square of number of frames, which is much 
smaller. 
 
The experiments published in [11] also show that the 

temporal PCA provides for complex meshes better 
compression efficiency than the spatial PCA, given the 
space dimensionality is reduced by equal ratio. 

Surprisingly, the temporal PCA has been only 
combined with very weak spatial compression tools, such as 
clustering. However, the available literature gives us a large 
variety of spatial encoding tools proposed for static mesh 
compression. From these, we have chosen the parallelogram 
predictor based on the EdgeBreaker [12] mesh traversal 
algorithm to predict the values of PCA coefficients in our 
CoDDyaC algorithm. The choice can be possibly replaced 
by an even more elaborate technique, however it provides a 
very good improvement over the spatial clustering 
approach, while it is still very easy to implement. 

 
3. ALGORITHM DESCRIPTION 

 
The compression algorithm can be summarized into 
following steps: 

 
1. construct a matrix of input data, where each 

column represents the trajectory of one vertex 
2. apply the PCA on the matrix 
3. express each vertex’s trajectory in the new basis, 

i.e. obtain a set of coefficients for each vertex 
4. traverse the common frame connectivity according 

to the EdgeBreaker algorithm. For each C case 
(new vertex), calculate the parallelogram 
prediction of the coefficients of the new vertex 

5. quantize and encode the prediction residuals 
6. encode the PCA basis without quantization 
 
In the first step, the input data are reorganized to form a 

set of trajectories. Note that for the PCA (unlike Wavelet 
decomposition) the order of values in the vector is 
irrelevant, and therefore it does not matter whether the 
vectors contains all the X values first, followed by all Y 
values and all Z values, or whether the vector contains XYZ 
triplets. The resulting matrix has the number of columns 
equal to the number of vertices of the shared connectivity, 
and 3f rows, f being the number of frames, which we don’t 
expect to be more than 200. 

Subsequently, we construct the autocorrelation matrix 
of the input data. Note that, in contrast to spatial PCA, here 
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we’re having a non-singular, relatively small (600x600) 
matrix. This matrix is then analyzed using off-the-shelf 
eigenvalue decomposition algorithm. 

The resulting eigenvectors represent the new basis of 
the space of trajectories, while corresponding eigenvalues 
represent the importance factors associated with the basis 
vectors. Now we select the first N basis vectors, and express 
every point trajectory within this new reduced basis by a 
simple matrix multiplication. 

The data structure at this point of the algorithm can be 
seen as a single connectivity triangular mesh, where each 
vertex is associated to a vector of coefficients, which can be 
decompressed into the vertex’s trajectory. Now we traverse 
the topology in the EdgeBreaker fashion, i.e. we start from a 
triangle and expand a borderline by one of the CLERS 
operations. Each vertex (except from the three initial ones) 
is used exactly once in the C operation, i.e. addition of a 
new vertex. In contrast to the EdgeBreaker, we do not 
encode the vertex coordinates, but we use the parallelogram 
predictor to predict the associated vector of PCA 
coefficients.  

The prediction residual is quantized with some user-
defined step, which affects the compression accuracy. The 
decoded quantized value replaces the original vector value, 
in order to avoid quantization error accumulation. Finally, 
the integer residuals are encoded using arithmetic coding, 
which allows reaching the entropy rate of the output stream. 

The decoder is very simple. First, it decodes from the 
stream the PCA basis, and the vectors associated with the 
first triangle. Then it reads the CLERS string from the 
encoded stream, and reconstructs the shared connectivity. 
Simultaneously, whenever the decoder reads the C 
operation code, it reconstructs the vector of PCA 
coefficients at the new vertex. The EdgeBreaker algorithm 
ensures that the adjacent triangle’s vectors are always 
available. 

Finally, the decoder reads the PCA basis, and 
reconstructs the original vertex trajectories by multiplying 
the coefficients by the basis vectors. Overall, when 
efficiently implemented, the decompression can be 
performed in real-time, given that some lag is acceptable to 
buffer the following scene. 

 
4. EXPERIMENTAL RESULTS 

 
We have implemented and tested our algorithm, and we 
have compared it to the most similar approach, i.e. the LPC 
algorithm by Karni. For the testing purposes, we have 
chosen the datasets that fit the current trend of high 
precision. We have performed extensive testing with the 
human jump dataset [13][14] (15700 vertices, we have 
chosen a subset of 200 frames) and dance sequence (7000 
vertices, 100 frames). Although there are other error 
measures available [15], we have performed MSE measures, 
in order to obtain results comparable with similar 
experiments.  

First, we found out that our method can process 
significantly more complex meshes in the main system 
memory than the LPC based approach. While CoDDyaC is 
easily applicable on the whole length of the human jump 
sequence, we ran into out of memory problems with the 
LPC approach unless the sequence has been shortened to 
about 150 frames. 

 

basis 
length 

No. of 
encoded 
values 

encoded 
values 
entropy 

basis 
size 

total 
bits 
[kb] 

rate 
[bpvf] MSE 

18 284886 2.0132 10800 1235.1 0.399 0.00441
20 316540 1.9610 12000 1356.2 0.438 0.00364
22 348194 1.9157 13200 1476.4 0.477 0.00304
24 379848 1.8762 14400 1596.0 0.516 0.00257
26 411502 1.8417 15600 1715.1 0.554 0.00220
28 443156 1.8114 16800 1833.9 0.593 0.00191
30 474810 1.7844 18000 1952.4 0.631 0.00168

 

The graphs show the rate/distortion ratios of the 
CoDDyaC approach for different numbers of basis vectors. 
The accuracy comparison for the dance sequence is shown 
in the second table. We assume that the PCA basis is 
encoded in a lossless fashion, i.e. 64 bits per double value. 
Although this assumption may be considered too strong, we 
note that lossy compression of the basis will lead to a very 
hardly predictable error distribution over the whole length 
of the mesh sequence. It can be also seen that even reducing 
the precision to a 32 bit float numbers will not change the 
superiority of CoDDyaC, which will be preserved unless the 
basis is compressed to less than 3.5 bits per value. 
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5. CONCLUSIONS AND FUTURE WORK 
 

We have presented a new method for dynamic mesh 
compression based on EdgeBreaker and PCA. The 
CoDDyaC algorithm exploits both spatial and temporal 
coherence of the input data for most of the encoded values. 
The PCA basis overhead is reduced compared to the LPC 
coding algorithm. The memory requirements of the 
algorithm do not grow with the complexity of the meshes, 
because it only depends on the length of the mesh sequence. 
We report significant gains in the terms of rate/distortion 
ration, where distortion is measured by MSE. The cases 
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when the algorithm should not be employed are whenever a 
long sequence of very simple geometry occurs. 

In the future we would like to combine the trajectory 
based PCA with more sophisticated prediction schemes. 
Another possibility is to use some simplification scheme on 
the shared connectivity on order to obtain a simplification 
algorithm for dynamic meshes. 

We would also like to test our method using the state-
of-the-art dynamic mesh comparison tools. We still believe 
that subjective quality measure is the best way to measure 
visual quality, and therefore subjective testing is one of our 
future goals. 
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basis 
length 

No. of 
encoded 
values 

encoded 
values 
entropy 

basis 
size 

total 
size 
[kb] 

rate 
[bpvf] MSE 

PCA+LPC 

20 1940 3.089 423660 26484 38.408 1.15E-06
18 1746 3.146 381294 23836 34.567 2.06E-06
16 1552 3.193 338928 21187 30.727 3.34E-06
14 1358 3.264 296562 18539 26.886 5.22E-06
12 1164 3.333 254196 15891 23.04 7.82E-06
10 970 3.388 211830 13242 19.204 1.31E-05
8 776 3.459 169464 10594 15.363 2.08E-05
6 582 3.465 127098 7945 11.522 4.07E-05
4 388 3.514 84732 5297 7.6819 8.22E-05

CoDDyaC 
10 70580 1.091 3000 262.7 0.3809 5.82E-05
9 63522 1.094 2700 236.6 0.3432 5.82E-05
8 56464 1.091 2400 210.2 0.3047 5.90E-05
7 49406 1.106 2100 184.6 0.2677 6.92E-05
6 42348 1.181 1800 161.3 0.2339 8.23E-05
5 35290 1.180 1500 134.4 0.1949 0.000107
4 28232 1.158 1200 106.9 0.1550 0.000184
3 21174 1.204 900 81.2 0.1177 0.00039
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