AMDO2006 Conf.proceedings (Ed. Prales,F.J., Fischer,R.B.), Spain, Springer Verlag, pp.29-37, ISSN 0302-9743, 2006

CODDYAC: CONNECTIVITY DRIVEN DYNAMIC MESH COMPRESSION

Libor Vasa, Vaclav Skala {Ivasa|skala@kiv.zcu.cz}

Department of Computer Science and Engineering
Faculty of Applied Sciences
University of West Bohemia

ABSTRACT

Compression of 3D mesh animations is a topic that has
received increased attention in recent years, due to
increasing capabilities of modern processing and displaying
hardware. In this paper we present an improved approach
based on known techniques, such as principal component
analysis (PCA) and EdgeBreaker, which allows efficient
encoding of highly detailed dynamic meshes, exploiting
both spatial and temporal coherence. We present the results
of our method compared with similar approaches described
in literature, showing that using our approach we can
achieve better performance in terms of rate/distortion ratio.

Index Terms — Dynamic mesh, compression, PCA,
EdgeBreaker, coherency exploitation, entropy

1. INTRODUCTION

Dynamic mesh is a common term used for a series of static
triangular meshes that represents a development of some
surface in time. Usually, two additional assumptions are
made about the dynamic mesh:

e cvery mesh in the series has the same connectivity, i.e.
there is an one-to-one correspondence of vertices from
frame to frame of the animation

e the animation represents some physical process, i.e.
there are no sudden changes in the geometry of the
subsequent frames of the animation.

The problem of compressing such data structure has
been addressed in the past by various approaches. One class
of algorithms is based on various spatio-temporal
predictors, which are an extension of the spatial predictors,
such as the parallelogram predictor [1]. The spatio-temporal
predictors apart from using positions of vertices in the
current frame also use vertex positions form one or more
preceding frames. One of the first attempts in this field are
the two spatio temporal predictors introduced with the
DynaPack algorithm by Ibarria and Rossignac [2], the ELP
predictor, and the Replica predictor. The connectivity driven
predictor proposed by Stefanoski [3] is another example of a
spatio-temporal predictor.

The approach suggested by Mueller et al. [4] can be
seen as an augmentation of the predictor based technique by
using spatial subdivision by an octree structure according to
the size of prediction residuals.

A slightly different approach has been proposed by
Payan et al. [5]. Their approach is targeted on exploiting the
temporal coherence by wavelet decomposition of the vertex
trajectories, followed by a rigorous bit-allocation process
that optimizes the rate-distortion ratio.

Alexa and Mueller [6] have suggested a PCA-based
approach based on reducing the space of shapes (frames).
Their approach first requires a rigid motion compensation
(the least-squares method is used to find an affine transform
that best fits the given frame with respect to the first frame
of the animation), and each frame is then expressed as a
linear combination of uncorrelated basis of the space of
possible shapes, called EigenShapes. The method is based
on singular value decomposition (SVD), as the space
dimension (number of vertices) is much greater than the
number of samples (number of frames).

Several improvements of the original Alexa’s method
have been proposed. First, Karni and Gotsman [7] have
suggested using linear prediction coding (LPC) on the PCA
coefficients in order to exploit temporal coherence of the
data. Subsequently, Sattler et al. [8] have proposed an
application of PCA onto trajectories instead of shapes, and
combining the approach with spatial clustering which
allows exploitation of spatial coherence.

A combination of PCA and local coordinate frame
(LCF) has been suggested by Amjoun [9]. The approach is
based on spatial clustering driven by the magnitude of
vertex coordinates expressed in each cluster’s LCF.

Recently, Mamou et al. [10] have proposed a method
based on automated skinning, which also uses the spatial
clustering. An affine transform that best fits each cluster
movement in time is found, and each vertex is described by
a weighted sum of the transforms associated with the cluster
the vertex belongs into, and of the transforms assigned with
the neighboring clusters.

More detailed description of the compression
approaches can be found in [11]. Generally, the methods
can be classified according to what approach is used to

AMDO2006 Conf.proceedings (Ed. Prales,F.J., Fischer,R.B.), Spain, Springer Verlag, pp.29-37, ISSN 0302-9743, 2006

exploit spatial and temporal coherence of the input data.
Following table summarizes the methods mentioned above:

spatial
temporal coherence
coherence
. predictor .
Ibarria (three vertices) predictor (one frame)
. predictor :
Stefanoski (three vertices) predictor (one frame)
Mueller octree predictor (one frame)
Pavan wavelet none
Y decomposition
Alexa PCA None
Karni PCA LPC
Sattler clustering PCA
Amjoun clustering, LCF PCA
. least-squares
Mamou skinning affine transform fitting

The goal of dynamic mesh compression is to exploit as
much spatial and temporal coherence as possible, and
indeed the methods that combine most efficient methods for
spatial and temporal coding provide the best results.
However, the problem of some of the methods, such as
EigenShapes based PCA method by Karni, is that there is a
significant overhead of the PCA basis, where no coherence
is exploited at all. The coordinates of the EigenShapes must
be encoded very precisely, and no coherence between the
EigenShapes can be used for better compression, because
the EigenShapes are uncorrelated.

2. CODDYAC ALGORITHM DERIVATION

The current movie industry modeling tools usually work
with low-poly models, which are only smoothed using some
subdivision technique as the last step of the modeling
process. However, the copyright issues and intellectual
property protection will most likely enforce transmission of
the final, smoothed, high-poly models. Also the current
scanning techniques provide rather dense meshes, and the
trend in computer games towards higher precision models is
also well known. On the other hand, the length of the
animation sequence is dictated by the rules of movie editing.
It is well known that usual movie scene is not longer than a
few seconds, being followed by a cut onto a different actor
or location, in order to maintain the observer’s attention.

Generally, we can expect growth of the complexity of
separate frames, i.e. growth of number of triangles and
vertices, while the length of the image sequences will
remain almost the same, and for the purposes of 3D
television it is not expected to be larger than 10 seconds, i.e.
250 frames.

Having this in mind, it seems to be preferable to use
PCA to encode vertex trajectories rather than the whole
frames. The advantages of such approach are following:

- smaller size of autocorrelation matrix, which can be

therefore faster analyzed using eigenvalue
decomposition

- smaller size of the PCA basis vectors

- significantly lower memory consumption during

compression, due to the fact that SVD within shape-
based PCA depends on the square of number of vertices,
while EVD within trajectory-based PCA only depends
on the square of number of frames, which is much
smaller.

The experiments published in [11] also show that the
temporal PCA provides for complex meshes better
compression efficiency than the spatial PCA, given the
space dimensionality is reduced by equal ratio.

Surprisingly, the temporal PCA has been only
combined with very weak spatial compression tools, such as
clustering. However, the available literature gives us a large
variety of spatial encoding tools proposed for static mesh
compression. From these, we have chosen the parallelogram
predictor based on the EdgeBreaker [12] mesh traversal
algorithm to predict the values of PCA coefficients in our
CoDDyaC algorithm. The choice can be possibly replaced
by an even more elaborate technique, however it provides a
very good improvement over the spatial clustering
approach, while it is still very easy to implement.

3. ALGORITHM DESCRIPTION

The compression algorithm can be summarized into
following steps:

1. construct a matrix of input data, where each
column represents the trajectory of one vertex

2. apply the PCA on the matrix

3. express each vertex’s trajectory in the new basis,
i.e. obtain a set of coefficients for each vertex

4. traverse the common frame connectivity according
to the EdgeBreaker algorithm. For each C case
(new vertex), calculate the parallelogram
prediction of the coefficients of the new vertex

5. quantize and encode the prediction residuals

6. encode the PCA basis without quantization

In the first step, the input data are reorganized to form a
set of trajectories. Note that for the PCA (unlike Wavelet
decomposition) the order of values in the vector is
irrelevant, and therefore it does not matter whether the
vectors contains all the X values first, followed by all Y
values and all Z values, or whether the vector contains XYZ
triplets. The resulting matrix has the number of columns
equal to the number of vertices of the shared connectivity,
and 3f rows, f being the number of frames, which we don’t
expect to be more than 200.

Subsequently, we construct the autocorrelation matrix
of the input data. Note that, in contrast to spatial PCA, here

AMDO2006 Conf.proceedings (Ed. Prales,F.J., Fischer,R.B.), Spain, Springer Verlag, pp.29-37, ISSN 0302-9743, 2006

we’re having a non-singular, relatively small (600x600)
matrix. This matrix is then analyzed using off-the-shelf
eigenvalue decomposition algorithm.

The resulting eigenvectors represent the new basis of
the space of trajectories, while corresponding eigenvalues
represent the importance factors associated with the basis
vectors. Now we select the first N basis vectors, and express
every point trajectory within this new reduced basis by a
simple matrix multiplication.

The data structure at this point of the algorithm can be
seen as a single connectivity triangular mesh, where each
vertex is associated to a vector of coefficients, which can be
decompressed into the vertex’s trajectory. Now we traverse
the topology in the EdgeBreaker fashion, i.e. we start from a
triangle and expand a borderline by one of the CLERS
operations. Each vertex (except from the three initial ones)
is used exactly once in the C operation, i.e. addition of a
new vertex. In contrast to the EdgeBreaker, we do not
encode the vertex coordinates, but we use the parallelogram
predictor to predict the associated vector of PCA
coefficients.

The prediction residual is quantized with some user-
defined step, which affects the compression accuracy. The
decoded quantized value replaces the original vector value,
in order to avoid quantization error accumulation. Finally,
the integer residuals are encoded using arithmetic coding,
which allows reaching the entropy rate of the output stream.

The decoder is very simple. First, it decodes from the
stream the PCA basis, and the vectors associated with the
first triangle. Then it reads the CLERS string from the
encoded stream, and reconstructs the shared connectivity.
Simultaneously, whenever the decoder reads the C
operation code, it reconstructs the vector of PCA
coefficients at the new vertex. The EdgeBreaker algorithm
ensures that the adjacent triangle’s vectors are always
available.

Finally, the decoder reads the PCA basis, and
reconstructs the original vertex trajectories by multiplying
the coefficients by the basis vectors. Overall, when
efficiently implemented, the decompression can be
performed in real-time, given that some lag is acceptable to
buffer the following scene.

4. EXPERIMENTAL RESULTS

We have implemented and tested our algorithm, and we
have compared it to the most similar approach, i.e. the LPC
algorithm by Karni. For the testing purposes, we have
chosen the datasets that fit the current trend of high
precision. We have performed extensive testing with the
human jump dataset [13][14] (15700 vertices, we have
chosen a subset of 200 frames) and dance sequence (7000
vertices, 100 frames). Although there are other error
measures available [15], we have performed MSE measures,
in order to obtain results comparable with similar
experiments.

First, we found out that our method can process
significantly more complex meshes in the main system
memory than the LPC based approach. While CoDDyaC is
easily applicable on the whole length of the human jump
sequence, we ran into out of memory problems with the
LPC approach unless the sequence has been shortened to
about 150 frames.

No. of encoded total

basis | encoded values basis | bits rate

length values entropy size [kb] |[bpvfl| MSE
18 284886 2.0132 10800 | 1235.1 | 0.399 | 0.00441
20 316540 1.9610 12000 | 1356.2 | 0.438 | 0.00364
22 348194 1.9157 13200 | 1476.4 | 0.477 | 0.00304
24 379848 1.8762 14400 | 1596.0 | 0.516 | 0.00257
26 411502 1.8417 15600 | 1715.1 | 0.554 | 0.00220
28 443156 1.8114 16800 | 1833.9 | 0.593 | 0.00191
30 474810 1.7844 18000 | 1952.4 | 0.631 | 0.00168

The graphs show the rate/distortion ratios of the
CoDDyaC approach for different numbers of basis vectors.
The accuracy comparison for the dance sequence is shown
in the second table. We assume that the PCA basis is
encoded in a lossless fashion, i.e. 64 bits per double value.
Although this assumption may be considered too strong, we
note that lossy compression of the basis will lead to a very
hardly predictable error distribution over the whole length
of the mesh sequence. It can be also seen that even reducing
the precision to a 32 bit float numbers will not change the
superiority of CoDDyaC, which will be preserved unless the
basis is compressed to less than 3.5 bits per value.

0.008 1

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11
rate [bpvf]

5. CONCLUSIONS AND FUTURE WORK

We have presented a new method for dynamic mesh
compression based on EdgeBreaker and PCA. The
CoDDyaC algorithm exploits both spatial and temporal
coherence of the input data for most of the encoded values.
The PCA basis overhead is reduced compared to the LPC
coding algorithm. The memory requirements of the
algorithm do not grow with the complexity of the meshes,
because it only depends on the length of the mesh sequence.
We report significant gains in the terms of rate/distortion
ration, where distortion is measured by MSE. The cases

AMDO2006 Conf.proceedings (Ed. Prales,F.J., Fischer,R.B.), Spain, Springer Verlag, pp.29-37, ISSN 0302-9743, 2006

No. of | encoded total
basis | encoded | values basis size rate
length | values | entropy size [kb] [bpvf] MSE
PCA+LPC
20 1940 3.089 |423660 | 26484 | 38.408 | 1.15E-06
18 1746 3.146 | 381294 | 23836 | 34.567 | 2.06E-06
16 1552 3.193 | 338928 | 21187 | 30.727 | 3.34E-06
14 1358 3.264 | 296562 | 18539 | 26.886 | 5.22E-06
12 1164 3.333 | 254196 | 15891 23.04 | 7.82E-06
10 970 3.388 |211830 | 13242 | 19.204 | 1.31E-05
8 776 3.459 | 169464 | 10594 | 15.363 | 2.08E-05
6 582 3.465 | 127098 | 7945 11.522 | 4.07E-05
4 388 3.514 | 84732 5297 7.6819 | 8.22E-05
CoDDyaC
10 70580 1.091 3000 262.7 | 0.3809 | 5.82E-05
9 63522 1.094 2700 236.6 | 0.3432 | 5.82E-05
8 56464 1.091 2400 210.2 | 0.3047 | 5.90E-05
7 49406 1.106 2100 184.6 | 0.2677 | 6.92E-05
6 42348 1.181 1800 161.3 | 0.2339 | 8.23E-05
5 35290 1.180 1500 134.4 | 0.1949 | 0.000107
4 28232 1.158 1200 106.9 | 0.1550 | 0.000184
3 21174 1.204 900 81.2 0.1177 | 0.00039

when the algorithm should not be employed are whenever a
long sequence of very simple geometry occurs.

In the future we would like to combine the trajectory
based PCA with more sophisticated prediction schemes.
Another possibility is to use some simplification scheme on
the shared connectivity on order to obtain a simplification
algorithm for dynamic meshes.

We would also like to test our method using the state-
of-the-art dynamic mesh comparison tools. We still believe
that subjective quality measure is the best way to measure
visual quality, and therefore subjective testing is one of our

future goals. ;

0.0006
0.0005 \ \
0.0004 1 4 '\

7 0.0003 \
2 0.

(
0.0002 \ \ \ \ \ \ 1
0.0001 %w—ip \\W \\ 5\ / 3 L

0.1 0.15 0.2 0.25 0.3 0.35 0.4
rate [bpvf]

ACKNOWLEDGEMENTS

This work has been supported by EU within FP6 under
Grant 511568 with the acronym 3DTV and by the Ministry
of Education, Youth and Sports of the Czech Republic
under the research program LC-06008 (Center for Computer
Graphics).

REFERENCES

[1] Touma C., Gotsman C.: Triangle Mesh Compression.
Proceedings of Graphics Interface, Vancouver, June 1998.

[2] Ibarria L., Rossignac J.: Dynapack: space-time compression of
the 3D animations of triangle meshes with fixed connectivity.
Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, San Diego, California, 2003.

[3] Stefanoski N., Ostermann J.: Connectivity-Guided Predictive
Compression of Dynamic 3D Meshes. International Conference on
Image Processing (ICIP), 2006.

[4] Miiller K., Smolic A., Kautzner M., Eisert P., Wiegand T.:
Predictive Compression of Dynamic 3D Meshes. Proc. ICIP2005,
IEEE International Conference on Image Processing, Genoa, Italy,
2005.

[5] Payan F., Antonini M.: Wavelet-based Compression of 3D
Mesh Sequences. Proceedings of IEEE 2nd ACIDCA-ICMI'2005,
Tozeur, Tunisia, 2005.

[6] Alexa M., Miiller W.: Representing animations by principal
components. Computer Graphics Forum, 19(3), pages 411-418,
2000.

[7] Karni Z., Gotsman C.: Efficient Compression of Soft-Body
Animation Sequences. Computers and Graphics, 28:25-34, 2004.

[8] Sattler M., Sarlette R., Klein R.: Simple and efficient
compression of animation sequences. Proceedings of the 2005
ACM SIGGRAPH/Eurographics — symposium on Computer
animation (SCA 2005), pages 209-217, 2005.

[9] Amjoun R., Sondershaus R., StraBer W.: Compression of
complex animated meshes. volume 4035, pages 606—613,
Computer Graphics International 2006 Conference, 2006.

[10] Mamou K., Zaharia T., Préteux F.: A skinning approach for
dynamic 3D mesh compression, Computer Animation and Virtual
Worlds, Volume 17, Numbers 3-4, pp. 337-346(10), 2006.

[11] Vasa, L.: Methods for dynamic mesh size reduction,
Technical report no. DCSE/TR-2006-07 at University of West
Bohemia, 2006.

[12] Rossignac J.: Edgebreaker: Connectivity compression for
triangle meshes. [EEE Transactions on Visualization and
Computer Graphics, Vol. 5, No. 1, 1999.

[13] Ankar N., Guskov L.: Extracting Animated Meshes with
Adaptive Motion Estimation, Proceedings of the 9th International
Fall Workshop on Vision, Modeling, and Visualization, November
2004.

[14] Sand P., McMillan L., Popovic J. : Continuous Capture of
Skin Deformation, ACM Transactions on Graphics, 22(3), pp. 578-
586, 2003.

[15] Vasa L., Skala V.: A Spatio-Temporal Metric for Dynamic
Mesh Comparison. In proceedings of AMDOZ2006 Int.conf, Spain,
Springer-Verlag LNCS 4069, pages 29-37, 2006.

