
A. Laganà et al. (Eds.): ICCSA 2004, LNCS 3045, pp. 81–89, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Combinatories and Triangulations*

Tomas Hlavaty** and Václav Skala***

University of West Bohemia,
Department of Computer Science and Engineering,

Univerzitni 8, 306 14 Plzen,
Czech Republic

{thlavaty,skala}@kiv.zcu.cz

Abstract. The problem searching for an optimal triangulation with required
properties (in a plane) is solved in this paper. Existing approaches are shortly
introduced here and, specially, this paper is dedicated to the brute force
methods. Several new brute force methods that solve the problem from different
points of view are described here. Although they have NP time complexity, we
accelerate the time needed for computation maximally to get results of as large
sets of points as possible. Note that our goal is to design the method that can be
used for arbitrary criterion without another prerequisite. Therefore, it can serve
as a generator of optimal triangulations. For example, those results can be used
in verification of developed heuristic methods or in other problems where
accurate results are needed and no methods for required criterion have been
developed yet.

1 Introduction

Assume that N points (in a plane) are given. Construct a triangulation on this set of
points that is optimal from the point of view of required properties.

The mentioned problem above try to solve many applications and criterions that
describe the properties of triangulations can have many forms (e.g., a triangulation
that minimizes sum of edge weights or that maximizes minimal angle in triangles,
etc.). This paper is just dedicated to this issue and several algorithms that solve this
problem are described here.

Next two chapters are a short introduction about triangulations and approaches of
triangulation generating. The first chapter is dedicated to the definition of
triangulation and to the general properties of triangulations. The second one contains
an overview of existing approaches that can solve this issue. The remainder chapters
are dedicated to methods based on the brute-force approach and they describe several
algorithms. The paper is finished by a comparison of the individual methods mutually
and by a conclusion. Note that the comparison is based on implementation of methods
for a given problem, exactly, they search for the MWT (i.e., Minimum Weight
Triangulation) [5], [7], [10].

* This work is supported by the Ministry of Education of the Czech Republic projects:
 ** FRVS 1342/2004/G1, *** MSM 235200005.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

82 T. Hlavaty and V. Skala

2 Triangulation

First of all, we should define the term triangulation. However, no exact definition
exists. The triangulation can be seen from several views as it is shown in following
two definitions (we only will think about triangulation of points in a plane here):

Definition 1. Let us assume that we have a set of different points in a plane S = {pi},
pi ∈ E2, i = 1, …, N. Then a set of so called edges represents a triangulation
T(S) = {ei} if the following conditions are valid:
1. Each edge ei in the triangulation includes just two points from the set S and these

points are end points of the edge (the edge is an abscissa that connects two given
end points).

2. Two arbitrary edges from the triangulation do not cross mutually.
3. It is impossible to insert another edge into the triangulation and to keep the

previous conditions valid simultaneously.

Definition 2. Let us assume that we have a set of different points in a plane S = {pi},
pi ∈ E2, i = 1, …, N. Then a set of so called empty triangles represents a triangulation
T(S) = {ti} if the following conditions are valid:

1. Each triangle in the triangulation includes just three points from the set S and
these points are vertices of the triangle (another point inside the triangle cannot
be included - this triangle is called the empty triangle).

2. Intersection of two arbitrary empty triangles from the triangulation can be a
vertex or an edge of the triangle maximally.

3. It is impossible to insert another empty triangle into the triangulation and to
keep the previous conditions valid simultaneously.

In the first moment, the definitions seem to be similar. It is valid because they only
look on the triangulation from two different views. In the first definition the
triangulation is represented as a set of edges and in the second one the triangulation is
represented as a set of triangles. An example of a triangulation is shown on the Fig. 1.
Note that many other definitions can be made up.

The boundary of the triangulation is the convex hull of a set of points S (see
the Fig. 1). Note that this is always valid for all triangulations constructed according
to the mentioned definitions and we can use this fact to determine those edges
automatically.

e2

e1

e3 e4
e5

e6e7
e8

e13e9 e10
e11

e14

e12

e15

t1
t2

t3

t4 t5
t6

t7
t8

Fig. 1. Triangulation – a set of edges, a set of triangles

Combinatories and Triangulations 83

We mentioned that edges of the convex hull are always in the triangulation. Let us
denote this kind of the edges as the common edges. However, the edges of convex
hull are not alone in this group of edges. It can be expanded by extra edges according
to the Definition 1. Then a general definition of the common edges can be following:

Definition 3. Let us assume that we have a set of different points in a plane S = {pi},
pi ∈ E2, i = 1, …, N and complete undirected graph on this set of point
G = {ek : ek = {pi, pj}, i ≠ j, i, j = 1, …, N}. The edges ek from the graph G which cross
no other edge are always in the arbitrary triangulation that can be constructed in the
input set of points S and these edges are denoted as common edges.

Some examples of common edges for several sets of points are shown on the Fig. 2
(note that edges of convex hull also fulfill mentioned definition).

common edges
other edges

Fig. 2. Examples of common edges

The next important property is the theorem about a number of edges and triangles
in an arbitrary triangulation that is possible to construct on a given set of points S.

Theorem 1. Let us assume that we have a set of N points S = {pi}, i = 1, …, N. If the
number of points in the convex hull is NCH then:

CHT

CHE

NNN

NNN

−−⋅=
−−⋅=

)1(2

)1(3
,

(1)

where NE is the number of edges and NT is the number of empty triangles in
the triangulation.

Last property, which we can use, follows from the definition of the triangulation.
No edges in the triangulation can cross mutually. Possibly, we can say about triangles
that no two triangles in the triangulation can overlap more than in an edge.
This fact minimizes the number of edges that can be inserted into triangulation from
the set of all possible edges. If an edge is inserted into a triangulation, we can be sure
that all edges that cross this edge cannot be in the triangulation (this is also valid for
triangles).

These three properties are valid for arbitrary sets of points. If we knew more about
desired triangulations, we could find any extra properties (see [2], [5]). However, our
goal is to design an algorithm which can be use for all kinds of the triangulations and
which can find the result for all arbitrary criterions of the triangulation. Therefore, we
will not think about this alternative.

84 T. Hlavaty and V. Skala

3 Introduction about Triangulation Generating Methods

Generally, several approaches that solve the issue of searching for triangulations with
a given properties exist. The ideal approach is based on usage algorithms with
polynomial time complexity. However, those algorithms are only known for some
properties of triangulation (e.g., Delaunay triangulation [1], [7]). In remaining cases a
brute force algorithm has to be used. The brute force term means that all possible
triangulations are generated, evaluated, and then the best one is selected. This
approach is general and triangulations with arbitrary properties can be found.
However, it also has a disadvantage. The algorithms generating all triangulations
generally do not have polynomial time complexity (the NP problem [4], [6]) and,
therefore, they only can find solutions on small sets of points. For all that, this paper
is just dedicated to this approach and several algorithms are proposed in the following
chapters. We will use knowledge from combinatorics [3], [8], [9] (combination
generating and triangulation generating are similar problems) and knowledge about
triangulations (see previous chapter) to design a fast, accurate and robust algorithm.
Note that one more approach exists. It is based on heuristic methods and can find
some solutions for large sets of points. However, the triangulation found by this
approach has not to be optimal. We only can be sure that it is an approximation of the
exact solution with an error. This approach can be considered as a compromise
between the polynomial time complexity and the exact solution.

3.1 Generator of Combination

From the equation (1) we know that all triangulations that can be constructed on a set
of points still have the same number of edges NE. This fact and a generator of
combinations together can be used to design an algorithm generating all triangulations
as it is described in the following text.

If we made a unification of the edges from all the triangulations, which can be
constructed, we would obtain a complete undirected graph of the set of points. Note
that the maximal number of the edges in this graph is equal:

2

)1(
2

−⋅=







= NNN

n ,
(2)

where N is the number of points.
Let us assign an index (from value 1 to n) to each edge in that complete undirected

graph. Suppose also that a generator of combinations generates all possible sequences
of NE numbers where individual numbers are different mutually and they are from the
range 1 to n. Then each combination can represent a triangulation and the number of
those combinations is equal to the binomial coefficient of n and k that is defined as:

CEE NNk
kkn

n

k

n
−=

⋅−
=








 ,

!)!(
!

,
(3)

Combinatories and Triangulations 85

where n is the number of edges of the complete undirected graph (see the equation 2),
NE is the number of edges in triangulation (see the equation 1) and NCE is the number
of common edges.

This combinatorial number proofs that we can expect non polynomial time
complexity. On the other hand, this is the worst case. Many combinations do not
represent a triangulation because the condition of the crossing edges is not
guaranteed. There is a question how to select the combinations representing the
triangulations effectively. Two methods are possible:
A. All combinations are generated by very fast algorithm [3], [8], [9], and then the

individual combinations are tested if they represent triangulations.
B. The algorithm is designed that it only generates the combinations of edges

representing triangulations.
Theoretically, it is very hard to decide which of the methods is better. The first
method uses a fast generator of the combinations. However, all combinations have to
be generated and tested if they represent a triangulation. The second method only
generates the combinations representing triangulations. However, the generator is
slower because a test that excludes the unsuitable combinations is included in the
generator. A threshold of the decision if it is better to use the A or B method affects
many factors (the speed of generating combinations, the speed testing if a
combination represents a triangulation, how many percents of combinations represent
triangulations, etc.). Practically, it is more simple and infallible to implement the
given algorithms and to compare them mutually as in our case. Note that a
comparison of both methods is shown later in the chapter containing results.

3.2 Edge Removing Method

Complete undirected graph is remarked in the previous method. If we looked at the
complete undirected graph again, we could find out that the unification of all edges,
which are in the individual triangulations, also represents this graph. This fact is used
in this method.

The start point of the algorithm is the complete undirected graph. When we will
select and mark an edge in the graph as the edge that has to be in triangulation, we can
remove all the edges that the given edge crosses. So we will obtain a new graph
without any edges from the complete graph and with an edge that is marked as the
edge of the triangulation. This procedure can be repeated until we obtain a graph that
only includes edges representing a triangulation. Of course, we need to find all
triangulations. The generating of the other triangulations is hidden in the mechanism
of edge selecting that decides if individual edges have to be in the triangulation. This
mechanism has to provide that no triangulation will be omitted and that any
triangulations also will not be generated twice or more times.

The result structure that fulfils the requirements is a binary tree. The root of the
tree represents the complete undirected graph and the leaves of the tree can be divided
into two groups. In the first group, there are the leaves representing the triangulations
according to the definition and, in the second one, there are the leaves that include
non crossing edges, but their number is not adequate (see the equation 1).

Like in the previous algorithm, we have to assign the unique index to each edge.
Then we can try to remove or to keep on the individual edges in the graph according
to the index of the edges step by step. Each decision represents one level of the tree,

86 T. Hlavaty and V. Skala

therefore, the maximal number of the levels is equal to the number of the edge in the
complete graph (see the equation 2). However, this value is less in practice because
the general properties of triangulations can be used in the implementation (see the
chapter about the triangulation). An example of that tree with a binary vector
representation is shown on the Fig. 3 (each bit represents one edge with a given index,
the value ‘1’ means that the edge is in the graph).

0

12

3 4
5

... pointer on the actual edge

... edge is in the graph

... edge is not in the graph

p1 p2 index

0 1 -
0 2 -
0 3 -
0 4 -
1 2 -
1 4 -
1 5 -
2 3 -
2 5 -
0 5 0
1 3 1
2 4 2
3 4 3
3 5 4
4 5 5

co
m

m
on

 e
dg

es

Fig. 3. An example of the edge removing method

3.3 Edge Inserting Method

This method is very similar to previous one. The only main difference is that the root
node of the tree represents the complete graph but the so called empty graph (it means
the graph with no edges). Otherwise, the algorithm is the same. A good question is if
this method towards the previous method is faster. Theoretically, it is very hard to
decide. It is affected many factors and, therefore, the implementation on the given
kind of the problem is the infallible way. An example of the tree with the
representation by a binary vector (like in the previous method) is shown on Fig. 4.

It perhaps seems that a representation by the binary vector is not possible. It is not
true. When we select an arbitrary node in the graph, we can separate the binary vector
into two parts (the left and right part) by the pointer on an actual edge. The bits of the
left part represent the edges which have been in process and their status only indicates
that the edges are or are not in the triangulation. The bits in the right part of the binary
vector (inclusive of the actual edge) represent the edges which have not been in
process yet and their status can say if the given edge still can be inserted into the
triangulation or if it is not possible. Now, it is sure that the binary representation is
sufficient and suitable in this case.

3.4 Triangle Inserting Method

In this last method that is introduced here we look on a triangulation like on a set of
the triangles. Of course, we could look at the triangulation from the same view in
previous methods and we could work with the empty triangles instead of the edges.
However, this approach would be worse and the final algorithm would be slower.

Combinatories and Triangulations 87

0

1

23

4

... pointer on the actual edge

... edge is in the graph

... edge is not in the graph

... edge cannot be in the graph

p1 p2 index

0 1 -
1 2 -
2 3 -
3 4 -
4 0 -
0 2 0
0 3 1
1 3 2
1 4 3
2 4 4

co
m

m
on

ed

ge
s

Fig. 4. An example of the edge inserting method

Let us return to our algorithm. At the beginning of this paper we said that the
convex hull was in all the triangulations. We used this fact here and the convex hull is
the start point of this algorithm. Exactly, the convex hull represents a polygon (the so
called boundary polygon) surrounding a region into which triangles have to be
inserted for creating a correct triangulation. The procedure of the algorithm is very
simple. An edge is chosen from the boundary polygon, and then the so called empty
triangle is inserted if it contains the selected edge and if it is inside the boundary
polygon. The empty triangle means a triangle whose vertices are any points from the
input set and which contains no other points from this set (see definition 2). By
inserting the triangle, the boundary polygon will be changed and will demark the
original region without the region of the inserted triangle. From this new polygon an
edge is selected and another empty triangle, which contains this selected edge and
which is included inside the new region, is inserted again. That procedure is repeated
until a correct triangulation is created (the boundary polygon just represents an empty
triangle).

Now we obtain one triangulation, however, we need to generate all triangulations.
It is possible to generate them when we ensure inserting all combinations of the
empty triangles for the given selected edge. We will get a tree data structure where
the root is the node including the edge of the convex hull and where the leaves of the
tree represent the triangulations. Each intermediate node has as many branches as
many empty triangles can be inserted for the selected edge of the given boundary
polygon. An example of this tree is shown on the Fig. 5.

0

1

23

4

5

inserted triangles

empty area

selected edge

Fig. 5. An example of the triangle inserting method

88 T. Hlavaty and V. Skala

4 Results

We described a few algorithms that generate all triangulations. In this chapter we
compared them mutually. The described algorithms were implemented for the MWT
(Minimum Weight Triangulation) [5], [7], [10] where weights of edges are
represented by Euclidian distances between the end points of edges. For this criterion,
an algorithm with a polynomial time complexity still has not been found, therefore, it
is an ideal situation for testing mentioned algorithms.

Our goal is to find the triangulation that has a minimal sum of weights of edges.
A structure of programs with the individual algorithms is similar and simple. When a
triangulation is found, it is evaluated and tested (the main task of the test is to
remember the triangulation with the best evaluation). When all possible triangulations
are found, we can be sure that we have obtained the best one. Note that an advantage
of this approach is in a small memory requirement and we always find the global
optimal solution. We do not need to remember all triangulations but only the best one.
We tested all algorithms for randomized generated sets of points on the same
computer (DELL, 450 MHz, 1 GB RAM) with OS Windows 2000. The resultant
graph that characterizes the time dependence of the calculation on the number of
points is shown on the Fig. 6.

The values in the graph were calculated as an average of times that had been
measured for the sets with the same number of points. Consequently, the values in the
graph are only expected times that were measured for the given kind of data (the
uniform distribution of points in a plane) on the given computer. For all that, we can
obtain some basic information about the individual algorithms and we can determine
which method is faster or slower. We can obtain an estimation of time for evaluation
of a bigger set of points, etc.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

6 7 8 9 10 11 12 13 14 15 16 17 18 19

number of points

ti
m

e
[m

in
]

Edge Remov ing
Method

Edge Inserting
Method

Generator of
Combinations A

Generator of
Combinations B

Triangle
Inserting Method

Fig. 6. The graph that shows the expected time needed to finding for the MWT by the designed
methods (a dependence on the number of points)

Combinatories and Triangulations 89

We can also estimate time complexity of the algorithms for another criterion on the
triangulation. The test searching for the MWT has O(N) time complexity in the
algorithm (the sum of edge weights has to be calculated for the found triangulation).
When we select the criterion that has the same time complexity for criterion
evaluation in the algorithm, we can use these results to estimate of needed time for
calculation.

5 Conclusion

The main goal of this work was to generate optimal triangulations for a required
criterion. It is expected that such generated triangulations will be used for verification
of new algorithms and for effective triangulation generating.

This paper presents an overview of new approaches. Several methods searching for
global optimal triangulations with required properties were developed, implemented
and tested. The comparison of developed algorithms generating all possible
triangulations was also made. By comparing the individual curves in the graph (see
the Fig. 6), we can see properties of developed algorithms. Generally, the complexity
of the triangular mesh generator is not polynomial and, therefore, a selection of an
unsuitable data structure or algorithm influences extensively the time that is needed
for the computation.

Finally, note that although the algorithms are designed for a triangulation
generator, the introduced algorithms can also be used to solve similar problems (e.g.,
combination generating, etc.).

References

1. Aurenhammer, F.: Voronoi Diagrams - A Survey of a Fundamental Geometric Data
Structure. ACM Computing Surveys 23(3): 345–405, 1991.

2. Drysdale, R., L., S., McElfresh, S., Snoeyink, J., S.: An improved diamond property for
minimum weight triangulation. 1998.

3. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and other
combinatorial configurations. Journal of the ACM, vol. 20, Issue 3, pp. 500–513, 1973.

4. Garey, M., R., Johnson, D., S.: Computers and Intractability: A Guide to the theory of NP-
completeness. W. H. Freeman, San Francisco, 1979.

5. Jansson, J.: Planar Minimum Weight Triangulations, Master’s Thesis, Department of
Computer Science, Lund University, Sweden, 1995.

6. Kucera, L.: Combinatorial Algorithms, ISBN 0-85274-298-3, SNTL, Publisher of
Technical Literature, 1989.

7. Preparate, F. P., Shamos, M. I.: Computational Geometry - an Introduction, Springer-
Verlag, New York, 1985.

8. Takaoka, T.: O(1) time algorithms for combinatorial generation by tree traversal.
Computer Jurnal, vol. 42, no. 5, pp. 400–408, 1999.

9. Xiang, L., Ushijima, K.: On O(1) Time Algorithms for Combinatorial Generation. The
Computer Journal, vol. 44, no. 4, pp. 292–302, 2001.

10. Yang, B., T., Xu, Y., F., You, Z., Y.: A chain decomposition algorithm for the proof of a
property on minimum weight triangulations. 1994.

	Introduction
	Triangulation
	Introduction about Triangulation Generating Methods
	Generator of Combination
	Edge Removing Method
	Edge Inserting Method
	Triangle Inserting Method

	Results
	Conclusion

