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Abstract. The problem searching for an optimal triangulation with required 
properties (in a plane) is solved in this paper. Existing approaches are shortly 
introduced here and, specially, this paper is dedicated to the brute force 
methods. Several new brute force methods that solve the problem from different 
points of view are described here. Although they have NP time complexity, we 
accelerate the time needed for computation maximally to get results of as large 
sets of points as possible. Note that our goal is to design the method that can be 
used for arbitrary criterion without another prerequisite. Therefore, it can serve 
as a generator of optimal triangulations. For example, those results can be used 
in verification of developed heuristic methods or in other problems where 
accurate results are needed and no methods for required criterion have been 
developed yet.  

1 Introduction 

Assume that N points (in a plane) are given. Construct a triangulation on this set of 
points that is optimal from the point of view of required properties. 

The mentioned problem above try to solve many applications and criterions that 
describe the properties of triangulations can have many forms (e.g., a triangulation 
that minimizes sum of edge weights or that maximizes minimal angle in triangles, 
etc.). This paper is just dedicated to this issue and several algorithms that solve this 
problem are described here. 

Next two chapters are a short introduction about triangulations and approaches of 
triangulation generating. The first chapter is dedicated to the definition of 
triangulation and to the general properties of triangulations. The second one contains 
an overview of existing approaches that can solve this issue. The remainder chapters 
are dedicated to methods based on the brute-force approach and they describe several 
algorithms. The paper is finished by a comparison of the individual methods mutually 
and by a conclusion. Note that the comparison is based on implementation of methods 
for a given problem, exactly, they search for the MWT (i.e., Minimum Weight 
Triangulation) [5], [7], [10]. 
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2 Triangulation 

First of all, we should define the term triangulation. However, no exact definition 
exists. The triangulation can be seen from several views as it is shown in following 
two definitions (we only will think about triangulation of points in a plane here): 

Definition 1. Let us assume that we have a set of different points in a plane S = {pi}, 
pi ∈ E2, i = 1, …, N. Then a set of so called edges represents a triangulation 
T(S) = {ei} if the following conditions are valid: 
1. Each edge ei in the triangulation includes just two points from the set S and these 

points are end points of the edge (the edge is an abscissa that connects two given 
end points). 

2. Two arbitrary edges from the triangulation do not cross mutually. 
3. It is impossible to insert another edge into the triangulation and to keep the 

previous conditions valid simultaneously. 

Definition 2. Let us assume that we have a set of different points in a plane S = {pi}, 
pi ∈ E2, i = 1, …, N. Then a set of so called empty triangles represents a triangulation 
T(S) = {ti} if the following conditions are valid: 

1. Each triangle in the triangulation includes just three points from the set S and 
these points are vertices of the triangle (another point inside the triangle cannot 
be included - this triangle is called the empty triangle). 

2. Intersection of two arbitrary empty triangles from the triangulation can be a 
vertex or an edge of the triangle maximally. 

3. It is impossible to insert another empty triangle into the triangulation and to 
keep the previous conditions valid simultaneously. 

In the first moment, the definitions seem to be similar. It is valid because they only 
look on the triangulation from two different views. In the first definition the 
triangulation is represented as a set of edges and in the second one the triangulation is 
represented as a set of triangles. An example of a triangulation is shown on the Fig. 1. 
Note that many other definitions can be made up. 

The boundary of the triangulation is the convex hull of a set of points S (see 
the Fig. 1). Note that this is always valid for all triangulations constructed according 
to the mentioned definitions and we can use this fact to determine those edges 
automatically. 
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Fig. 1. Triangulation – a set of edges, a set of triangles 
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We mentioned that edges of the convex hull are always in the triangulation. Let us 
denote this kind of the edges as the common edges. However, the edges of convex 
hull are not alone in this group of edges. It can be expanded by extra edges according 
to the Definition 1. Then a general definition of the common edges can be following: 

Definition 3. Let us assume that we have a set of different points in a plane S = {pi}, 
pi ∈ E2, i = 1, …, N  and complete undirected graph on this set of point 
G = {ek : ek = {pi, pj}, i ≠ j, i, j = 1, …, N}. The edges ek from the graph G which cross 
no other edge are always in the arbitrary triangulation that can be constructed in the 
input set of points S and these edges are denoted as common edges. 
 

Some examples of common edges for several sets of points are shown on the Fig. 2 
(note that edges of convex hull also fulfill mentioned definition). 

common edges
other edges  

Fig. 2. Examples of common edges 

The next important property is the theorem about a number of edges and triangles 
in an arbitrary triangulation that is possible to construct on a given set of points S. 

Theorem 1. Let us assume that we have a set of N points S = {pi}, i = 1, …, N. If the 
number of points in the convex hull is NCH  then: 

CHT

CHE

NNN

NNN

−−⋅=
−−⋅=

)1(2

)1(3
, 

(1) 

where NE is the number of edges and NT is the number of empty triangles in 
the triangulation. 
 

Last property, which we can use, follows from the definition of the triangulation. 
No edges in the triangulation can cross mutually. Possibly, we can say about triangles 
that no two triangles in the triangulation can overlap more than in an edge. 
This fact minimizes the number of edges that can be inserted into triangulation from 
the set of all possible edges. If an edge is inserted into a triangulation, we can be sure 
that all edges that cross this edge cannot be in the triangulation (this is also valid for 
triangles). 

These three properties are valid for arbitrary sets of points. If we knew more about 
desired triangulations, we could find any extra properties (see [2], [5]). However, our 
goal is to design an algorithm which can be use for all kinds of the triangulations and 
which can find the result for all arbitrary criterions of the triangulation. Therefore, we 
will not think about this alternative. 
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3 Introduction about Triangulation Generating Methods 

Generally, several approaches that solve the issue of searching for triangulations with 
a given properties exist. The ideal approach is based on usage algorithms with 
polynomial time complexity. However, those algorithms are only known for some 
properties of triangulation (e.g., Delaunay triangulation [1], [7]). In remaining cases a 
brute force algorithm has to be used. The brute force term means that all possible 
triangulations are generated, evaluated, and then the best one is selected. This 
approach is general and triangulations with arbitrary properties can be found. 
However, it also has a disadvantage. The algorithms generating all triangulations 
generally do not have polynomial time complexity (the NP problem [4], [6]) and, 
therefore, they only can find solutions on small sets of points. For all that, this paper 
is just dedicated to this approach and several algorithms are proposed in the following 
chapters. We will use knowledge from combinatorics [3], [8], [9] (combination 
generating and triangulation generating are similar problems) and knowledge about 
triangulations (see previous chapter) to design a fast, accurate and robust algorithm. 
Note that one more approach exists. It is based on heuristic methods and can find 
some solutions for large sets of points. However, the triangulation found by this 
approach has not to be optimal. We only can be sure that it is an approximation of the 
exact solution with an error. This approach can be considered as a compromise 
between the polynomial time complexity and the exact solution. 

3.1 Generator of Combination 

From the equation (1) we know that all triangulations that can be constructed on a set 
of points still have the same number of edges NE. This fact and a generator of 
combinations together can be used to design an algorithm generating all triangulations 
as it is described in the following text. 

If we made a unification of the edges from all the triangulations, which can be 
constructed, we would obtain a complete undirected graph of the set of points. Note 
that the maximal number of the edges in this graph is equal: 

2

)1(
2

−⋅=







= NNN

n , 
(2) 

where N is the number of points. 
Let us assign an index (from value 1 to n) to each edge in that complete undirected 

graph. Suppose also that a generator of combinations generates all possible sequences 
of NE numbers where individual numbers are different mutually and they are from the 
range 1 to n. Then each combination can represent a triangulation and the number of 
those combinations is equal to the binomial coefficient of n and k that is defined as: 
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where n is the number of edges of the complete undirected graph (see the equation 2), 
NE is the number of edges in triangulation (see the equation 1) and NCE is the number 
of common edges. 

This combinatorial number proofs that we can expect non polynomial time 
complexity. On the other hand, this is the worst case. Many combinations do not 
represent a triangulation because the condition of the crossing edges is not 
guaranteed. There is a question how to select the combinations representing the 
triangulations effectively. Two methods are possible: 
A.  All combinations are generated by very fast algorithm [3], [8], [9], and then the 

individual combinations are tested if they represent triangulations. 
B.  The algorithm is designed that it only generates the combinations of edges 

representing triangulations. 
Theoretically, it is very hard to decide which of the methods is better. The first 
method uses a fast generator of the combinations. However, all combinations have to 
be generated and tested if they represent a triangulation. The second method only 
generates the combinations representing triangulations. However, the generator is 
slower because a test that excludes the unsuitable combinations is included in the 
generator.   A threshold of the decision if it is better to use the A or B method affects 
many factors (the speed of generating combinations, the speed testing if a 
combination represents a triangulation, how many percents of combinations represent 
triangulations, etc.). Practically, it is more simple and infallible to implement the 
given algorithms and to compare them mutually as in our case. Note that a 
comparison of both methods is shown later in the chapter containing results. 

3.2 Edge Removing Method 

Complete undirected graph is remarked in the previous method. If we looked at the 
complete undirected graph again, we could find out that the unification of all edges, 
which are in the individual triangulations, also represents this graph. This fact is used 
in this method.  

The start point of the algorithm is the complete undirected graph. When we will 
select and mark an edge in the graph as the edge that has to be in triangulation, we can 
remove all the edges that the given edge crosses. So we will obtain a new graph 
without any edges from the complete graph and with an edge that is marked as the 
edge of the triangulation. This procedure can be repeated until we obtain a graph that 
only includes edges representing a triangulation. Of course, we need to find all 
triangulations. The generating of the other triangulations is hidden in the mechanism 
of edge selecting that decides if individual edges have to be in the triangulation. This 
mechanism has to provide that no triangulation will be omitted and that any 
triangulations also will not be generated twice or more times. 

The result structure that fulfils the requirements is a binary tree. The root of the 
tree represents the complete undirected graph and the leaves of the tree can be divided 
into two groups. In the first group, there are the leaves representing the triangulations 
according to the definition and, in the second one, there are the leaves that include 
non crossing edges, but their number is not adequate (see the equation 1).  

Like in the previous algorithm, we have to assign the unique index to each edge. 
Then we can try to remove or to keep on the individual edges in the graph according 
to the index of the edges step by step. Each decision represents one level of the tree, 
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therefore, the maximal number of the levels is equal to the number of the edge in the 
complete graph (see the equation 2). However, this value is less in practice because 
the general properties of triangulations can be used in the implementation (see the 
chapter about the triangulation). An example of that tree with a binary vector 
representation is shown on the Fig. 3 (each bit represents one edge with a given index, 
the value ‘1’ means that the edge is in the graph). 
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... edge is not in the graph
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0    1      -
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Fig. 3. An example of the edge removing method 

3.3 Edge Inserting Method 

This method is very similar to previous one. The only main difference is that the root 
node of the tree represents the complete graph but the so called empty graph (it means 
the graph with no edges). Otherwise, the algorithm is the same. A good question is if 
this method towards the previous method is faster. Theoretically, it is very hard to 
decide. It is affected many factors and, therefore, the implementation on the given 
kind of the problem is the infallible way. An example of the tree with the 
representation by a binary vector (like in the previous method) is shown on Fig. 4. 

It perhaps seems that a representation by the binary vector is not possible. It is not 
true. When we select an arbitrary node in the graph, we can separate the binary vector 
into two parts (the left and right part) by the pointer on an actual edge. The bits of the 
left part represent the edges which have been in process and their status only indicates 
that the edges are or are not in the triangulation. The bits in the right part of the binary 
vector (inclusive of the actual edge) represent the edges which have not been in 
process yet and their status can say if the given edge still can be inserted into the 
triangulation or if it is not possible. Now, it is sure that the binary representation is 
sufficient and suitable in this case. 

3.4 Triangle Inserting Method 

In this last method that is introduced here we look on a triangulation like on a set of 
the triangles. Of course, we could look at the triangulation from the same view in 
previous methods and we could work with the empty triangles instead of the edges. 
However, this approach would be worse and the final algorithm would be slower. 
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Fig. 4. An example of the edge inserting method 

Let us return to our algorithm. At the beginning of this paper we said that the 
convex hull was in all the triangulations. We used this fact here and the convex hull is 
the start point of this algorithm. Exactly, the convex hull represents a polygon (the so 
called boundary polygon) surrounding a region into which triangles have to be 
inserted for creating a correct triangulation. The procedure of the algorithm is very 
simple. An edge is chosen from the boundary polygon, and then the so called empty 
triangle is inserted if it contains the selected edge and if it is inside the boundary 
polygon. The empty triangle means a triangle whose vertices are any points from the 
input set and which contains no other points from this set (see definition 2). By 
inserting the triangle, the boundary polygon will be changed and will demark the 
original region without the region of the inserted triangle. From this new polygon an 
edge is selected and another empty triangle, which contains this selected edge and 
which is included inside the new region, is inserted again. That procedure is repeated 
until a correct triangulation is created (the boundary polygon just represents an empty 
triangle).  

Now we obtain one triangulation, however, we need to generate all triangulations. 
It is possible to generate them when we ensure inserting all combinations of the 
empty triangles for the given selected edge. We will get a tree data structure where 
the root is the node including the edge of the convex hull and where the leaves of the 
tree represent the triangulations. Each intermediate node has as many branches as 
many empty triangles can be inserted for the selected edge of the given boundary 
polygon. An example of this tree is shown on the Fig. 5. 
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Fig. 5. An example of the triangle inserting method 
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4 Results 

We described a few algorithms that generate all triangulations. In this chapter we 
compared them mutually. The described algorithms were implemented for the MWT 
(Minimum Weight Triangulation) [5], [7], [10] where weights of edges are 
represented by Euclidian distances between the end points of edges. For this criterion, 
an algorithm with a polynomial time complexity still has not been found, therefore, it 
is an ideal situation for testing mentioned algorithms. 

Our goal is to find the triangulation that has a minimal sum of weights of edges. 
A structure of programs with the individual algorithms is similar and simple. When a 
triangulation is found, it is evaluated and tested (the main task of the test is to 
remember the triangulation with the best evaluation). When all possible triangulations 
are found, we can be sure that we have obtained the best one. Note that an advantage 
of this approach is in a small memory requirement and we always find the global 
optimal solution. We do not need to remember all triangulations but only the best one. 
We tested all algorithms for randomized generated sets of points on the same 
computer (DELL, 450 MHz, 1 GB RAM) with OS Windows 2000. The resultant 
graph that characterizes the time dependence of the calculation on the number of 
points is shown on the Fig. 6.  

The values in the graph were calculated as an average of times that had been 
measured for the sets with the same number of points. Consequently, the values in the 
graph are only expected times that were measured for the given kind of data (the 
uniform distribution of points in a plane) on the given computer. For all that, we can 
obtain some basic information about the individual algorithms and we can determine 
which method is faster or slower. We can obtain an estimation of time for evaluation 
of a bigger set of points, etc. 
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Fig. 6. The graph that shows the expected time needed to finding for the MWT by the designed 
methods (a dependence on the number of points) 
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We can also estimate time complexity of the algorithms for another criterion on the 
triangulation. The test searching for the MWT has O(N) time complexity in the 
algorithm (the sum of edge weights has to be calculated for the found triangulation). 
When we select the criterion that has the same time complexity for criterion 
evaluation in the algorithm, we can use these results to estimate of needed time for 
calculation. 

5 Conclusion 

The main goal of this work was to generate optimal triangulations for a required 
criterion. It is expected that such generated triangulations will be used for verification 
of new algorithms and for effective triangulation generating.  

This paper presents an overview of new approaches. Several methods searching for 
global optimal triangulations with required properties were developed, implemented 
and tested. The comparison of developed algorithms generating all possible 
triangulations was also made. By comparing the individual curves in the graph (see 
the Fig. 6), we can see properties of developed algorithms. Generally, the complexity 
of the triangular mesh generator is not polynomial and, therefore, a selection of an 
unsuitable data structure or algorithm influences extensively the time that is needed 
for the computation. 

Finally, note that although the algorithms are designed for a triangulation 
generator, the introduced algorithms can also be used to solve similar problems (e.g., 
combination generating, etc.). 
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